Roles of the subfornical organ and area postrema in arterial pressure increases induced by 48‐h water deprivation in normal rats

نویسندگان

  • John P. Collister
  • David B. Nahey
  • Michael D. Hendel
  • Virginia L. Brooks
چکیده

In rats, water deprivation (WD) increases arterial blood pressure (BP) in part due to actions of elevated osmolality in the brain to increase vasopressin levels and sympathetic activity. However, the osmoreceptors that mediate this response have not been identified. To test the hypothesis that osmoregulatory circumventricular organs are involved, BP and heart rate (HR) were continuously recorded telemetrically during 48 h of WD in normal rats with lesions (x) or sham lesions (sham) of the subfornical organ (SFO) or area postrema (AP). Although WD increased BP in SFOx and SFOsham rats, no significant difference in the hypertensive response was observed between groups. HR decreased transiently but similarly in SFOx and SFOsham rats during the first 24 h of WD. When water was reintroduced, BP and HR decreased rapidly and similarly in both groups. BP (during lights off) and HR were both lower in APx rats before WD compared to APsham. WD increased BP less in APx rats, and the transient bradycardia was eliminated. Upon reintroduction of drinking water, smaller falls in both BP and HR were observed in APx rats compared to APsham rats. WD increased plasma osmolality and vasopressin levels similarly in APx and APsham rats, and acute blockade of systemic V1 vasopressin receptors elicited similar depressor responses, suggesting that the attenuated BP response is not due to smaller increases in vasopressin or osmolality. In conclusion, the AP, but not the SFO, is required for the maximal hypertensive effect induced by WD in rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossing interaction of adrenergic, cholinergic, histaminergic and opioidergic systems on water intake in adult male rats

Several lines of evidence have indicated that many nuclei in the brain including preoptic nucleus, AV3V, subfornical organ, septal area and lateral hypothalamus are the targets of efferents from chemo-sensitive and pressure-sensitive systems. These areas may concern with regulation of fluid homeostasis. In the present study, intracerebroventricular injections were carried out in all experiments...

متن کامل

Crossing interaction of adrenergic, cholinergic, histaminergic and opioidergic systems on water intake in adult male rats

Several lines of evidence have indicated that many nuclei in the brain including preoptic nucleus, AV3V, subfornical organ, septal area and lateral hypothalamus are the targets of efferents from chemo-sensitive and pressure-sensitive systems. These areas may concern with regulation of fluid homeostasis. In the present study, intracerebroventricular injections were carried out in all experiments...

متن کامل

BRIEF COMMUNICATIONS Subfornical Organ Does It Protect against Angiotensin Il-Induced Hypertension in the Rat?

The purpose of this study was to examine the contribution of the subfornical organ to the chronic hypertension produced by intravenous angiotensin II infusion in rats. Male rats were instrumented with permanent arterial and venous catheters and housed in metabolism cages for daily measurement of arterial pressure, heart rate, water intake, water balance, and urinary electrolyte excretion. Angio...

متن کامل

Role of the subfornical organ in the chronic hypotensive response to losartan in normal rats.

Angiotensin II is known to act at a unique set of brain regions known as the circumventricular organs. These structures lack the normal blood-brain barrier and are therefore thought to participate in the central nervous system processing of neuroendocrine signals. We have reported that chronic treatment with the angiotensin type 1 (AT1) receptor antagonist, losartan, decreases arterial pressure...

متن کامل

Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I.

The intestinal incretin hormone glucagon-like peptide I (GLP-I) inhibits gastric motility and secretion in normal, but not in vagotomized subjects, pointing to a centrally mediated effect. Therefore, our aim was to study the availability of rat brain GLP-I receptors to peripherally injected 125I-labeled GLP-I. The specificity of the binding was tested by co-injection of excess amounts of unlabe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014